Propriedades de termoluminescência, ressonância paramagnética eletrônica e absorção óptica da rodonita natural e sintética / Thermoluminescence, electron paramagnetic resonance and optical absorption properties of natural and synthetic Rodonita

AUTOR(ES)
DATA DE PUBLICAÇÃO

2005

RESUMO

The optical absorption, electron paramagnetic resonance and thermoluminescence properties of natural silicate mineral, rhodonite with chemical formula (Mn,Ca,Fe,Mg)SiO3 as well as synthetic samples pure or doped have been investigated. Synthetic samples were obtained heating appropriated mixture of oxides components of rhodonite to above melting temperature and then cooling slowly. The x-ray diffract gram of these artificial rhodonites have shown rhodonite structure. A natural sample with additional radiation dose ranging 0.1 up to 50 kGy presented a glow curve with TL peaks at 1400C, 2500C, 2800C, 3350C and 4600C. These peaks glow sublinearly. A natural sample heat treated at 6000C for one hour then irradiated to 0.1 up to 50kGy presents almost the same TL peaks, except for 1800C new TL peak and splitting of 3350C into 300 and 3400C peaks. Their TL responses to radiation dose have same sublinear behavior. The spectrum of TL light at 2600C TL peak presented only one broad band extending from 500nm to 625nm and at 1400C TL peak, somewhat broader band from 500 to 650nm. This result shows that there is only one recombination center. The TL glow curves of synthetic pure (MnSiO3) and doped samples show the same TL peak found in natural sample. These results indicate that the intrinsic defects have an important role. Addition of impurities such as Ca, Fe, Mg and TL did not change much the peaks height. However, the addition of aluminum has enhanced greatly the TL responses, and however, low temperature and high temperature peaks have grown prominently so that all the peaks became hidden. The fact that Al impurity has striking effect on TL emission was interpreted as follows. In silica it has been demonstrated that the always present Al3+ substitutes for Si4+ in the SiO44- tetrahedron. Any neighboring alkaline metal ion M+ form a center according the reaction Under irradiation, M+ is removed leaving the defect [AlO4/h]0, known as aluminum hole center. During heating for TL reading, the alkali atom liberated in the formation of aluminum center releases an electron to recombine with the hole of the aluminum center regenerating the original [AlO4/M+] center. In the optical absorption spectrum of natural sample of rhodonite there are several absorption bands, the prominent being 344nm, 357nm, 367nm, 410nm, 415nm, 542nm in visible region and a broad band in 1040nm in the infrared region. A very weak band at 1500nm is also detected. The 1040nm is known to be due to Fe2+. The theory of crystal field calculation has shown that 410nm and 542nm bands can be explained assuming that Mn3+ in Oh and C4V sites are responsible rather than Mn2+. The XPS spectroscopy measurements of the natural sample indicated the presence of Mn3O4 and MnO2. An annealing at 6000C for one hour replaced Mn3O4 by MnO and MnO2. The EPR spectrum consists of a very broad line, about 1350 Gauss, of g 2.0. This due to spin-spin interaction. Van Vleck theory was used to shown that Mn dipole-dipole interaction above 7000C increases the microwave absorption width. The increase of the concentration due to conversion under strong heating, was shown by the observed decrease of Fe2+ absorption band above 7000C.

ASSUNTO(S)

cristais iônicos Óptica absorção thermoluminescence electron paramagnetic resonance rodonita termoluminescência ressonância paramagnética eletrônica rhodonite optical absorption ionic crystals

Documentos Relacionados