PRODUÇÃO DE PIGMENTOS INORGÂNICOS A BASE DE ZrSiO4 COM INCORPORAÇÃO DE PASTA ELETROLÍTICA DE PILHAS / PREPARATION OF INORGANIC PIGMENTS BASED ON THE ZrSiO4 OXIDE FROM A MIXTURE OF AN ELECTROLYTIC-PASTE WASTE OF ALKALINE BATTERIES AND ZrSiO4

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Throughout the times, new pigment systems have been gradually developed. In the nowadays, the development of ceramic pigments represents a part of the Materials Science, where there is a lack of concepts, roles and strategies, which in goal allows the developing of new rotes of preparing or pigments, in both scientific and technological areas. This work deals with the development of an innovative processing route and characterization of ceramic pigments based on the formation of solid solution of zircon silicate via doping with manganese cations being the source of manganese cations a waste of alkaline battery. In fact, an electrolytic paste of zinc-carbon batteries was used as a starting precursor of the manganese oxide, major component of the electrolytic paste, as a precursor of the chromophore agent. As a standard, Mn doped ZrSiO4 pigments were prepared via mechanical mixture of oxides process using analytical MnO2 (P.A.) oxide as a starting precursor of manganese cations. Powder mixtures exhibiting different percentages in weight of electrolytic paste were homogenized in the isopropyl alcohol via ball milling during 6 h. In the sequence, precursors were dried in furnace type oven at 110C until the weight stabilizing giving the precursor of the pigment. Then, the precursor was calcined, desagglomerated and sieved (350 mesh).The precursor calcination was carried out in an oven furnace at 1150C with a soaking time of 4h, in air atmosphere, heating rate of 10C/min, cooling rate stemming from high temperature to the room temperature was carried out via natural rate of the furnace. After the calcination of precursor, powders were characterized by scanning electron microscopy, X-ray diffraction, UV-Vis spectroscopy and laser granulometry, so the crystalline phases, microstructure, the colorimetric parameters and the some spectroscopic properties of pigments were determined. Pigment exhibiting the highest color intensity was obtained using higher fraction of electrolytic paste. As a whole, pigments proved to be chemically and thermally resistant at 800C, when applied in vitreous enamels with industrial composition directed to ceramic plating. Pigments showed excellent dispersion degree in a low-density polyethylene and a homogeneous color.

ASSUNTO(S)

pasta eletrolítica pilhas electrolytic paste pigmentos quimica batteries pigments

Documentos Relacionados