Preparation, characterization, and application of trimetalic catalysts for direct ethanol fuel cells: Pt-Ru-Sn/C / Preparação, caracterização e aplicação de catalisadores trimetálicos para a oxidação de etanol em célula a combustível direta: Pt-Ru-Sn/C

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

This work aimed at developing a method for the obtention of carbon-supported Pt nanocatalysts modified with Rhutenium and Tin, which were evaluated for ethanol eletrooxidation in direct fuel cells. To obtain these catalysts, we employed the Pechini method, which consists in the decomposition of a polymeric precursor. Many nanocatalysts containing various PtRuSn molar ratios were prepared, but the carbon:metal ratio was kept constant, at 60/40%. These nanocatalysts were physico-chemically characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray Spectroscopy (EDX). Our results show that the crystallite size is around 7 nm for the bimetallic nanocatalysts, and 5.8 nm for the trimetallic ones. The experimental composition is close to the nominal one, but the metal particles are not evenly distributed on the carbon surface. Cyclic voltammetry (CV) and chronoamperometry were used for the electrochemical characterization of the nanocatalysts. As for ethanol electrooxidation, High Performance Liquid Chromatography (HPLC) was carried out after electrolysis, for determination of the products generated from ethanol consumption. The main product found after electrolysis was acetaldehyde, together with traces of CO2 and acetic acid. The addiction of Ru and Sn to the pure Pt nanocatalyst improved its performance for ethanol oxidation significantly. The onset potential for ethanol in the case of the trimetallic nanocatalyst Pt0.8Ru0.1Sn0.1/C is 200 mV, which is lower than that obtained with the pure Pt catalyst (0.45 V vs HRE).

ASSUNTO(S)

electrooxidation etanol eletrooxidação. ethanol célula a combustível fuel cell

Documentos Relacionados