Predictive Modeling of the Shelf Life of Fish under Nonisothermal Conditions


American Society for Microbiology


The behavior of the natural microflora of Mediterannean gilt-head seabream (Sparus aurata) was monitored during aerobic storage at different isothermal conditions from 0 to 15°C. The growth data of pseudomonads, established as the specific spoilage organisms of aerobically stored gilt-head seabream, combined with data from previously published experiments, were used to model the effect of temperature on pseudomonad growth using a Belehradek type model. The nominal minimum temperature parameters of the Belehradek model (Tmin) for the maximum specific growth rate (μmax) and the lag phase (tLag) were determined to be −11.8 and −12.8°C, respectively. The applicability of the model in predicting pseudomonad growth on fish at fluctuating temperatures was evaluated by comparing predictions with observed growth in experiments under dynamic conditions. Temperature scenarios designed in the laboratory and simulation of real temperature profiles observed in the fish chill chain were used. Bias and accuracy factors were used as comparison indices and ranged from 0.91 to 1.17 and from 1.11 to 1.17, respectively. The average percent difference between shelf life predicted based on pseudomonad growth and shelf life experimentally determined by sensory analysis for all temperature profiles tested was 5.8%, indicating that the model is able to predict accurately fish quality in real-world conditions.

Documentos Relacionados