Polyurethane/poly (Ionic Liquids) Cellulosic Composites and their Evaluation for Separation of CO2 from Natural Gas

AUTOR(ES)
FONTE

Mat. Res.

DATA DE PUBLICAÇÃO

20/01/2020

RESUMO

The development of both versatile and inexpensive sorbents for CO2/CH4 separation has become one of the greatest challenges to the environment and natural gas processing. This study reports the preparation and characterization of polyurethane (PU)/ cellulose based poly(ionic liquid)(CPIL) composites for CO2/CH4 separation. PU matrix was reinforced with CPIL in the range of 10-30 wt%. Several characterization techniques (TGA, DSC, DMTA and FESEM ) were used to study the physical properties of composites when the PU matrix is reinforced with cellulose based poly (ionic liquids) (CPIL) up to 30%. CO2 sorption, reusability and CO2/CH4 selectivity were assessed by pressure-decay technique. Results showed that CPIL addition in PU matrix promoted the increase in both thermal stability and mechanical properties when compared to PU. The best result for CO2 sorption (35.0 mgCO2/g) was obtained for PU/CPIL-TBP 10% which presented a higher sorption value when compared to PU (24.1 mgCO2/g) and PU/CELLULOSE 10% (26.8 mgCO2/g). PU/CPIL-TBP 20% demonstrated higher CO2/CH4 selectivity. PU/CPIL composites appear as promissory materials for CO2 capture. These compounds combine the benefits of ionic liquids (ILs) (high ionic conductivity, chemical and thermal stability) and cellulose (thermal stability) with PU properties (mechanical stability, processing and tunable macromolecular design).

Documentos Relacionados