Polyphenol Oxidation by Vicia faba Chloroplast Membranes: STUDIES ON THE LATENT MEMBRANE-BOUND POLYPHENOL OXIDASE AND ON THE MECHANISM 1 OF PHOTOCHEMICAL POLYPHENOL OXIDATION

AUTOR(ES)
RESUMO

The mechanism whereby light effects polyphenol oxidation was examined with Vicia faba chloroplast membranes known to contain a bound latent polyphenol oxidase. Results obtained with the inhibitors 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-idopropyl-p-benzoquinone (DBMIB) indicated an involvement of the non-cyclic electron transport pathway in the light-dependent oxidation of polyphenols, such as dihydroxyphenylalanine (DOPA). Further evidence was provided by experiments in which (a) DOPA replaced H2O as electron donor for the photoreduction of NADP, (b) NADP replaced O2 as electron acceptor in the photochemical oxidation of DOPA, and (c) the variable fluorescence associated with photosystem II was increased by DOPA. The photochemical oxidation of DOPA by V. faba chloroplast membranes was insensitive to KCN and to antibodies against purified latent polyphenol oxidase. The results are consistent with the conclusion that the light-dependent oxidation of polyphenols by V. faba chloroplast membranes is achieved independently of the latent membrane-bound polyphenol oxidase. Electrons derived from polyphenols seem to enter the noncyclic electron transport chain on the oxidizing side of photosystem II and to react with O2 at an unidentified site on the photosystem I side of the DCMU/DBMIB blocks.

Documentos Relacionados