Polimerização via radical livre fotoiniciada de sistemas multicomponentes para utilização em dispositivos oftalmicos : aspectos opticos e mecanicos / Free radical polymerization photoinitiated of multicomponent systems for us e in ophthalmic devices : optical and mechanical aspects

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

The current market calls for materials presenting good optical properties which satisfy consumers and users in general and that can be easily handled and processed. Generally, a polymer must present good optical properties, impact resistance and hardness - all compatible in their use as ophthalmic lenses. For quite a long period of time, ophthalmic lenses manufacturing had been achieved by means of thermal processes (thermal curing), taking up to 20 hours to obtain lenses free of cracking and/or processing errors. In this manner, the introduction of ultraviolet light curing technology has allowed the production of materials with equal and even superior characteristics than those obtained through thermal curing, and with advantages in processing time (reduced from hours to minutes), as well as costs, which were also reduced. The following monomers and oligomers were utilized in this study: methyl methacrylate (MAM), 1,6-Hexanediol diacrylate (HDDMA), diacrylate tetra functional aliphatic urethane (Ebecryl 5129) and epoxy diacrylate bisphenol A (Ebecryl 3700-20 t). A system of photoinitiators composed by darocur 1173, Irgacure 184, Irgacure 1300, Irgacure 2959, Irgacure 250 and Irgacure 819 have been applied in each formulation. The photoinitiators systems have been formulated on a 3% p/p basis, following suppliers orientations and experimental results obtained throughout this study, with a 7-minute formulation curing time. The main mechanical properties a lens must present, such as acceptable harness and impact resistance, were analyzed in the study. Vitreous transition temperature, heat resistance and the evaluation of the photoinitiators in kinetics have been analyzed and studied, as well as the evolution of enthalpy during a 100°C polymerization process and formulation conversions by differential photocalorimetry distinguishing (DPC)

ASSUNTO(S)

refração refraction polymerization radicais livres (quimica) espectro ultravioleta free radicals (chemistry) polimerização ultraviolet spectrum enthalpy entalpia

Documentos Relacionados