Plasma Membrane Vesicles of Opposite Sidedness from Soybean Hypocotyls by Preparative Free-Flow Electrophoresis 1

AUTOR(ES)
RESUMO

Absolute orientations (sidedness) of plasma membrane vesicles obtained in highly purified fractions by preparative free-flow electrophoresis and by aqueous two-phase partition were determined based on ATPase latency and morphological criteria. Free-flow electrophoresis yielded two plasma membrane fractions. One, the least electronegative and designated fraction `E,' was pure plasma membrane. The other, more electronegative and designated fraction `C,' was heavily contaminated by various other cellular membranes. Plasma membrane vesicles from both fraction C and fraction E partitioned into the upper phase with aqueous two-phase partitioning. Purified plasma membrane obtained from microsomes by two-phase partition (upper phase) when subjected to free-flow electrophoresis also yielded two fractions, one fraction co-migrated with fraction C and another fraction co-migrated with fraction E. Both fractions exhibited an ATPase activity sensitive to vanadate and insensitive to nitrate and azide. ATPase activity was used as a structure-linked latency marker for the inner membrane surface. Concanavalin A binding (linked to peroxidase) was used as an imposed electron microscope marker for the outer membrane surface. Fraction E vesicles showed low ATPase latency (two-fold or less) and weak reactivity with concanavalin A peroxidase. In contrast, fraction C vesicles were characterized by much greater latencies upon detergent treatment (sevenfold) and a strong reaction with concanavalin A peroxidase. Two-phase partition as the initial procedure for plasma membrane isolation, yielded mixtures of vesicles of both inside out and right-side out orientation. Free-flow electrophoresis resolved the plasma membrane isolates into vesicles from fraction C which were right-side out (cytoplasmic side in), and vesicles from fraction E which were wrong-side out (cytoplasmic side out). Therefore, the two methods used in series, provided highly purified membrane preparations of apparently homogenous vesicles of opposite known absolute orientations.

Documentos Relacionados