Physiological and Environmental Requirements for Poplar (Populus deltoides) Bark Storage Protein Degradation.

AUTOR(ES)
RESUMO

In poplar (Populus deltoides Bartr. ex Marsh), a 32-kD bark storage protein (BSP) accumulates in the bark during autumn and winter and declines during spring shoot growth. We investigated the physiological and environmental factors necessary for the degradation of poplar BSP. Poplar plants were exposed to short-day (SD) photoperiods for either 28 or 49 d. Plants exposed to short days for 28 d formed a terminal bud but were not dormant, whereas exposure to short days for 49 d induced bud dormancy. BSP accumulated in bark of plants exposed to both SD treatments. The level of BSP declined rapidly when nondormant plants were returned to long days. BSP levels did not decline in dormant plants that were exposed to long-day (LD) conditions. If dormant plants were first treated with either low temperatures (0[deg]C for 28 d) or with 0.5 M H2CN2 to overcome dormancy and then returned to long days, the level of BSP declined. Removal of buds from non-dormant or dormant plants in which dormancy had been overcome inhibited the degradation of BSP in LD conditions. BSP mRNA levels rapidly declined in plants exposed to long days, irrespective of the dormancy status of the plants or the presence or absence of buds. These results indicate that the buds of poplars are somehow able to communicate with bark storage sites and regulate poplar BSP degradation. These results further support an association of BSP mRNA levels with photoperiod because short days stimulate BSP mRNA accumulation, whereas long days result in a decline of BSP mRNA abundance.

Documentos Relacionados