Physical properties of systems with competing interactions / Propriedades fisicas de sistemas com interações competitivas

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

Um dos objetivos centrais das Ciências Naturais é relacionar as estruturas dos mais diversos sistemas com as funções particulares que os caracterizam. Por exemplo, no que se refere a materiais, sejam eles sintéticos ou biológicos, a ciência está constantemente buscando a predição de diferentes propriedades macroscópicas a partir do conhecimento das suas estruturas mi- croscópicas. Nesta tese, investigamos as propriedades magnéticas e de transporte de sistemas que apresentam interações competitivas em diferentes escalas de comprimento. Como resultado desta competição, surge um estado termodinâmico caracterizado por um parâmetro de ordem modulado, dando origem a uma série de con.gurações espacialmente inomogêneas. A termo- dinâmica destes estados modulados pode ser descrita pelo chamado modelo de Brazovskii, que prevê uma transição de primeira ordem, induzida pelas .utuações do parâmetro de ordem, entre a fase homogênea e a fase modulada. Há uma vasta gama de sistemas encontrados na Natureza que parecem se encaixar nesta descrição de Brazovskii, compreendendo estruturas tão díspares quanto cristais líquidos e condensados de píons em estrelas de nêutrons. No presente trabalho, investigamos dois sistemas físicos particulares. Motivados pela rica variedade de domínios obser- vados experimentalmente em filmes finos magnéticos, estudamos as propriedades magnéticas de blocos ferromagnéticos dipolares com dimensões finitas e condições de contorno não-periódicas. Desenvolvendo uma modelagem baseada na solução da Hamiltoniana de Brazovskii, pudemos explicar, de maneira inédita e consistente, a estrutura de domínios magnéticos dos filmes finos de MnAs:GaAs, um promissor candidato a aplicações no campo da spintrônica. Além disso, estabelecemos uma relação clara entre o fenômeno de reorientação magnética e a mudança na forma das curvas de histerese observada nesses filmes. O segundo tipo de sistemas que in- vestigamos foram os isolantes de Mott, cujas propriedades de transporte foram determinadas a partir do modelo de redes de resistores correlacionados. Considerando que a transição de Mott térmica pertence à classe de universalidade de Ising, mostramos que a condutividade macroscópica depende não apenas da magnetização, mas também da densidade de energia, dando origem a um comportamento de crossover. Através destes resultados, lançamos luz sobre a aparente e misteriosa incoerência entre as previsões teóricas e as medidas experimentais recentes envolvendo isolantes de Mott não-dopados. Prosseguindo para as fases inomogêneas dos isolantes de Mott dopados, estudamos a condutividade macroscópica das mesofases eletrônicas com ordenamento de carga esmético e nemático, as quais são encontradas nos niquelatos e nos cupratos, respectivamente. Inspirados nos conceitos da Física dos cristais líquidos, expressamos de forma bastante intuitiva a relação entre as propriedades de transporte e a termodinâmica das mesofases eletrônicas anisotrópicas, descrita pelo modelo de Brazovskii

ASSUNTO(S)

fases inomogêneas modelo de isolantes de dipolar ferromagnets brazovskii ferromagnetos dipolares mott insulators self-organization brazovskii model auto-organização mott inhomogeneous phases

Documentos Relacionados