Phosphorylation of lipopolysaccharides in the Antarctic psychrotroph Pseudomonas syringae: a possible role in temperature adaptation.

AUTOR(ES)
RESUMO

Phosphorylation of lipopolysaccharide (LPS) from a psychrotrophic bacterium, Pseudomonas syringae, from Antarctica was studied by using sucrose gradient-separated membrane fractions. The bacterium was found to possess an LPS kinase which could phosphorylate more LPS postsynthetically at higher temperatures. The phosphorylation was low at a lower temperature and was also found to occur in vivo. After phosphorylation of LPS in vitro, it was found that the major part of the radioactivity (> 85%) was associated with the core oligosaccharide region of the LPS. The phosphate groups of this region are probably involved in the binding of metal ions, which could be removed by EDTA. The cells grown at the lower temperature probably contained fewer divalent cations because of the smaller amount of phosphate and thereby were more sensitive to EDTA. The cells were also more sensitive to cationic antibiotics at the lower temperature. A possible role of this differential phosphorylation of LPS in modulating the function of the outer membrane as a permeability barrier in the psychrotroph is discussed.

Documentos Relacionados