Perfil de atividade da proteína tirosina fosfatase de baixa massa molecular relativa e da fosfatase ácida resistente ao tartarato em osteoblastos humanos durante o ciclo e diferenciação celular / Low molecular weight protein tyrosine phosphatase and tartrate resistant acide phosphatase activity in human osteoblasts during cell cycle and differentiation

AUTOR(ES)
DATA DE PUBLICAÇÃO

2005

RESUMO

Low molecular weight protein tyrosine phosphatase (LMW-PTP) and tartrate resistant acid phosphatase (TRAP) activity were determined in hFOB 1.19 human osteoblasts cell line during cell proliferation and differentiation. LMW-PTP and TRAP enzymatic activity were determined at 6, 18, 24, 36, 48 and 72 hours after fetal calf serum stimulation of subconfluent cultures and 7, 14, 21, 28 and 35 days after cell confluence and differentiation. The LMW-PTP and TRAP activity were measured using p-nitrophenylphosphate as substrate. The osteogenic potential of hFOB 1.19 cells was studied by measuring alkaline phosphatase activity, and mineralized nodule formation by Von Kossa staining. The oxitative stress was determined by HPLC and DNTB assays. During cell cycle progression, LMW-PTP and TRAP activities were strongly reduced, being almost undetectable after 18h of serum stimulation, while H3-thymidine incorporation progressively increased, suggesting that the decrease in the LMW-PTP and TRAP activities were necessary for entry into the S phase. During osteoblastic differentiation, the activity of LMW-PTP and alkaline phosphatase progressively increased until the 21th day, decreasing thereafter. In conclusion, this work demonstrates that hFOB 1.19 cells constitute a suitable model system for the study of the role played by LMW-PTP and TRAP in cell cycle progression and cell differentiation, and that LMW-PTP and TRAP activities are clearly modulated during osteoblastic proliferation and differentiation in vitro. The activities of these phosphatases during cell differentiation depended on the correct levels of reduced glutathione.

ASSUNTO(S)

ciclo celular proteinas diferenciação celular osteoblasto (tratamento)

Documentos Relacionados