PARALLEL TOPOLOGICAL SUPPORT FOR FINITE ELEMENT MESHES IN DYNAMIC FRACTURE AND FRAGMENTATION ANALYSES / SUPORTE TOPOLÓGICO EM PARALELO PARA MALHAS DE ELEMENTOS FINITOS EM ANÁLISES DINÂMICAS DE FRATURA E FRAGMENTAÇÃO

AUTOR(ES)
DATA DE PUBLICAÇÃO

2011

RESUMO

Fracture propagation and fragmentation phenomena in solids can be described by Cohesive Zone Models and simulated with the Finite Element Method. Among the computational approaches of recent interest for fracture representation in finite element meshes are those based on cohesive elements. In those approaches, fracture behavior is represented by cohesive elements inserted at the interfaces between volumetric (bulk) elements of the original mesh. Cohesive element models can be classified into intrinsic or extrinsic. Intrinsic models require pre-inserted cohesive elements at every volumetric interface in which fracture is allowed to happen. On the other hand, extrinsic models require that cohesive elements be adaptively inserted, wherever and whenever necessary. However, the traditional mesh representation (elements and nodes) is not sufficient for handling adaptive meshes, which makes an appropriate topological support necessary. In general, cohesive models of fracture also require a high level of mesh refinement near crack tips, such that accurate results can be achieved. This implies in memory and processor consumption that may be prohibitive for traditional workstations. Thus, parallel environments become important for the solution of fracture problems. However, due to the difficulties for the parallelization of extrinsic models, the existing approaches use intrinsic models or implement extrinsic simulations based on pre-inserted cohesive elements or cohesive elements represented as attributes of volumetric elements. In order to allow fracture and fragmentation simulations of large models in a simple and efficient way, this thesis proposes the ParTopS system, a parallel topological support for finite element meshes in dynamic fracture and fragmentation analyses. Specifically, a compact and efficient representation of distributed fracture meshes is presented. Cohesive elements are explicitly represented and treated as regular elements in the mesh. Based on the distributed mesh representation, we propose a scalable parallel algorithm for adaptive insertion of cohesive elements in both bidimensional and tridimensional meshes. Symmetrical topological operations are exploited in order to reduce communication among mesh partitions. The ParTopS system has been employed in order to parallelize existing serial extrinsic simulations. The scalability and correctness of the parallel topological support is demonstrated through computational experiments executed on a massively parallel environment. The achieved results show that ParTopS can be effectively applied in order to enable simulations of large models.

ASSUNTO(S)

simulacao simulation estrutura de dados topologica topological data structure fragmentacao fragmentation

Documentos Relacionados