Oxidative aspects and phenol biotransformation in the microalga Minutocellus polymorphus / Aspectos oxidativos e de biotransformação do poluente fenol na microalga Minutocellus polymorphus

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Minutocellus polymorphus is a cosmopolitan marine microalgae found in many areas. It is sensitive to several types of toxicants and therefore it was chosen to investigate the phenol biotransformation, as well as the oxidative stress induced by this pollutant. M. polymorphus exposed to phenol displays an increase in the enzymes superoxide dismutase (143.5±46.9 U mg-1 for the treated group and 27.1±12.7 U mg-1 for the control group) and catalase activities (9.79 ± 1.32 µmol min-1 mg-1 in the phenol group and 7.00 ± 1.03 µmol min-1 mg-1 in the control). The enzymes ascorbate peroxidase, dehydroascorbate reductase, gluthathione reductase and gluthathione peroxidase were not affected by the treatment with phenol. Phenol reduced the levels of gluthathione (GSH) in M. polymorphus, and therefore, the ratio GSH/GSSG is affected considerably. The intracellular levels of diadinoxanthin and chlorophyll-a were affected by the presence of phenol. The levels of malondialdehyde, important product of lipoperoxidation, were not altered in M. polymorphus when cells were exposed to this organic pollutant. The phenol uptake, by M. polymorphus, was followed and a decrease of 250 µmol. L-1 in the cell-free medium was estimated after six days of exposure. Cells previously exposed to the pollutant uptakes 99 % in 2 hours of incubation. The enzymes of phenol biotransformation, phenol hydroxylase (PH) and catechol 2,3-dioxygenase (C2,3-D) activities were induced after 6 days incubation. However, the activity of catechol 1,2-dioxygenase (C1,2-D) was not detected. These results suggest that the degradation of the phenol follows a meta clivagem being formed it 2-hydroxymuconic semialdehyde by the action of C2,3-D. The gluthathione S-transferase (GST) also displays an important role in the phenol detoxification. M. polymorphus exposed to the phenol for 48 hours had an increase of GST activity (7.4 ± 1.5 nmol min-1 mg-1 in the phenol group and 14.6 ± 1.3 nmol min-1 mg-1 in the control group). Our results suggest that the microalgae M. polymorphus is a potential to phenol biotransformation and it may be considered an important bioindicator and SOD, catalase, GST and GSH important biomarkers of aquatic pollution

ASSUNTO(S)

biodegradação biodegradation estresse oxidativo fenol microalga microalgae minutocellus polymorphus minutocellus polymorphus oxidative stress phenol

Documentos Relacionados