OUTFLOW FORECAST BASED ON ARTIFICIAL NEURAL NETORKS AND WAVELET TRANSFORM / PREVISÃO DE VAZÃO POR REDES NEURAIS ARTIFICIAIS E TRANSFORMADA WAVELET

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

The hydroelectricity system is responsible for 83.7% of the electric energy generated at Brazil. Therefore, the generation of electric power in Brazil depends basically on the natural flow rates distributed by twelve basins in the country. The quality of prediction of natural flow is of crucial importance for the Brazilian governmental agency, ONS (from the portuguese language Electrical National Operator System), responsible for preparing the forecast and the generation of scenarios of daily, weekly and monthly average natural streamflows of all places of hydroelectric exploitations of SIN (from the portuguese language National Linked System). The quality of that forecast impacts directly in the planning and operation programs of SIN, for example, the PMO (from the portuguese language Monthly Operation Program). Even with the improvement in the quality of river flow forecasts through the creation and adoption of the various deterministic and stochastic models in recent years, the errors of forecasting are still significant. Thus, the main goal of this dissertation was proposing a new model capable of providing a significant improvement in Streamflow forecasts in regions of exploitations of hydroelectric basins of the country. The proposed model, based on neural networks, has the primary tool the use of wavelet transforms, to filter streamflows historical data, or the entries of predict neural networks, dividing the input data (signals) in several scales, in order that the neural networks can better analyse them. In order to check the effectiveness of the proposed model, here called MIP (from the portuguese language Forecast Intelligent Model), it was developed a case study to forecast daily and weekly average of natural incremental streamflows between the Hydroelectric Plants: Porto Primavera, Rosana e Itaipu belonging to the the Parana River Basin. The model reaches up an error of about 3,5% to estimates of streamflows one day ahead, 16% to 12 days ahead, and 9% for average weekly forecast. This thesis aims to also investigate the effectiveness of the use of information of observed and predicted rainfall in the forecast flow, in conjunction with the use of the historical streamflows.

ASSUNTO(S)

wavelet transform transformada wavelet redes neurais artificiais previsao de vazao artificial neural networks outflow forecast

Documentos Relacionados