Ordem e caos em plasmas magnetizados




The objective of this thesis is to present a clear understanding of some important nonlinear phenomena that are common in space and laboratory plasmas. Specifically,the present analytical and numerical studies have focused on the properties of electromagnetic turbulence as well as associated coherent structures and chaotic behaviors in a multi-component magnetoplasma. The emphasis is on the generation of electromagnetic waves by sheared plasma flows in a nonuniform magnetoplasma containing an equilibrium density gradient. Two scenarios are considered. First, it is studíed high-frequency (in comparison with the ion plasma and ion gyrofrequencies, but smaller than the electrongyrofrequency), long wavelength (in comparison with the electron gyroradius) electromagnetic fluctuations involving only the electron motion, the ions are considered as stationary background because on a short time-scale of our interest they do not respond to electro-magnetie disturbances. A set of nonlinear equations is then derived by employing the hydrodynamic equations with the electron fluid velocity in drift approximation, supplemented by the Ampère and Faraday laws. On the other hand, the response of the ions; in our analysis has been included for low-frequency (in comparison with the ion gyrofrequency) and long wavelength (in comparison with the ion gyroradius pi) as well as for short wavelength (<


magnetoidrodinamica turbulencia de plasma fusão controlada astrofisica ondas de plasma comportamento caotico nos sistemas

Documentos Relacionados