Optimization Techniques and Mathematical Modeling Applied to Reluctance Motors

AUTOR(ES)
FONTE

Journal of Microwaves, Optoelectronics and Electromagnetic Applications

DATA DE PUBLICAÇÃO

2022

RESUMO

Abstract The present work aims at the application of different optimization strategies in the electromagnetic analysis of the Variable Reluctance Motor (VRM) through Finite Element (FE) simulation. Two case studies are investigated: the first one aims to optimize the geometry and electrical characteristics of windings of a single-phase VRM 6/6, minimizing copper losses; the second aims to optimize a restricted set of geometric parameters of a 4- phase VRM 8/6, maximizing the flux linkage in the phase coils per unit volume of magnetic core. In this way, by using the Finite Element Method (FEM), the results from the Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms will be compared and highlighted. Then, the magnetic flux densities of the motors are analyzed before and after the optimization. The results obtained show good efficiency of the algorithms, since the objective functions were satisfied with respect to the reference models.

Documentos Relacionados