Optical Activity of Membrane Suspensions: Calculation of Artifacts by Mie Scattering Theory

AUTOR(ES)
RESUMO

The circular dichroism, optical rotatory dispersion, and optical density of a suspension of erythrocyte ghosts are calculated from the measured optical properties of solubilized ghosts by classical general scattering theory (Mie theory). The ghost is represented by a solvent-filled spherical shell 7 nm (70 Å) thick and 3.5 μm in radius. The 3- to 5-nm red shifts and unusual band shapes observed in the circular dichroism and optical rotary dispersion of suspensions of the intact ghosts, but not in the solubilized membranes, are reproduced by these calculations. Both differential absorption and differential scattering of left-and right-circularly polarized light contribute significantly to the calculated circular dichroism spectra. The artifacts of small membrane vesicles are shown to be less than those of intact ghosts. It is concluded that the characteristic anomalies in the optical activity of membrane suspensions are artifactual.

Documentos Relacionados