Numerical simulation of incompressible viscous flow in deforming domains

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

We present a second-order accurate finite difference method for numerical solution of the incompressible Navier-Stokes equations in deforming domains. Our approach is a generalization of the Bell-Colella-Glaz predictor–corrector method for incompressible flow. In order to treat the time-dependence and inhomogeneities in the incompressibility constraint introduced by presence of deforming boundaries, we introduce a nontrivial splitting of the velocity field into vortical and potential components to eliminate the inhomogeneous terms in the constraint and a generalization of the Bell-Colella-Glaz algorithm to treat time-dependent constraints. The method is second-order accurate in space and time, has a time step constraint determined by the advective Colella-Friedrichs-Lewy condition, and requires the solution of well behaved linear systems amenable to the use of fast iterative methods. We demonstrate the method on the specific example of viscous incompressible flow in an axisymmetric deforming tube.

Documentos Relacionados