Numerical investigation of the flow around two circular cylinders in tandem. / Estudo numérico do escoamento ao redor de cilindros alinhados.




This work deals with the incompressible flow around pairs of rigid and immovable circular cylinders in tandem arrangements. There are two goals in this research: the first one is to find causality relationships between physical characteristics of the flow and the changes that are observed in the forces and in the flow field with the variation of the Reynolds number (Re) and the distance between the bodies; and the second one is to comprehend the mutual influence between three-dimensional structures and interference. The spectral element method was employed to carry out two- and three-dimensional simulations of the flow. The centre-to-centre distance (lcc) of the investigated configurations varies between 1.5 and 8 diameters, and they are compared to the isolated cylinder case. The Re range goes from 160 to 320, covering the transition in the wake. We focused in the small scale instabilities (modes A and B). Data of Strouhal number, mean drag coefficient, RMS of the lift coefficient and axial correlation are presented. With aid of flow visualizations, we propose mechanisms to explain the interference phenomenon, which is reflected in the behaviour of the graphics. The results show that two-dimensional simulations are not sufficient to predict the (Re, lcc) pair correspondent to the drag inversion point. We also verified that, in the cases where lcc is lower than the critical spacing, the transition in the wake happens in a way different from the one observed in the flow around a single cylinder.


hydromechanics mecânica dos fluidos computacional computational fluid dynamics vórtices dos fluidos vortices of fluids hidromecânica

Documentos Relacionados