Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development.

AUTOR(ES)
RESUMO

We have isolated three cDNA clones (TED2, TED3, and TED4) for genes expressed preferentially in cells that redifferentiate into tracheary elements from mesophyll cells isolated from leaves of Zinnia elegans. Sequence analyses of TED clones revealed that TED2 encodes a hydrophobic polypeptide with a significant similarity to the guinea pig lens-specific protein (zeta-crystallin) and that the deduced polypeptide of TED3 may be a novel cell wall protein. In situ hybridization of the TED probes with young Zinnia seedlings showed that expression of the three TED genes was restricted to vascular cells and regulated in a temporal and spatial manner during vascular development. TED3 transcripts were localized specifically to a few cells that are to differentiate or are differentiating into tracheary elements in all organs examined. TED4 transcripts were present mainly in the immature primary xylem both of cotyledons and of the boundary region between the root and hypocotyl and in the procambium of roots. In contrast, TED2 transcripts accumulated not only in immature primary xylem cells but also in immature phloem cells both in roots and in the boundary region between the root and hypocotyl. In addition, TED2 transcripts were expressed in the procambium cells of roots. In cotyledons, TED2 transcripts did not accumulate in xylem or phloem cells but only in two regions that might form a new vein just outside the phloem of the main leaf vein. Taken together, our findings indicate that TED2, TED3, and TED4 can be novel and efficient markers for development of the vascular system.

Documentos Relacionados