Nonlinear kinetics of ferritin adsorption.

AUTOR(ES)
RESUMO

The adsorption of ferritin at a methylized quartz surface was measured with off-null ellipsometry and transmission electron microscopy. An initial lag-phase was seen, followed by an accelerating adsorption leading to mass transport limitation of the reaction. The rate of adsorption then decreased at a surface concentration far below monolayer coverage, and a continuously decreasing rate of binding was seen. The slope of the binding rate was linear with the logarithm of time (fractal kinetics). The adsorbed ferritin molecules were distributed in clusters as seen by transmission electron microscopy. Clusters grown during the mass transport limited adsorption had crystalline structure at short range and low fractal dimensions (df = 0.89) over long range. Clusters grown during adsorption with fractal kinetics showed random structure at short range and a high fractal dimension df = 1.86 over all ranges. These findings indicate some new important mechanisms responsible for the complex kinetics of macromolecular reactions at solid-liquid interfaces. The results are discussed in relation to recently developed theories of self-organized criticality.

Documentos Relacionados