Non linear models for count longitudinal data / Modelos não lineares para dados de contagem longitudinais

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

Experimentos em que medidas são realizadas repetidamente na mesma unidade experimental são comuns na área agronômica. As técnicas estatísticas utilizadas para análise de dados desses experimentos são chamadas de análises de medidas repetidas, tendo como caso particular o estudo de dados longitudinais, em que uma mesma variável resposta é observada em várias ocasiões no tempo. Além disso, o comportamento longitudinal pode seguir um padrão não linear, o que ocorre com freqüência em estudos de crescimento. Também são comuns experimentos em que a variável resposta refere-se a contagem. Este trabalho abordou a modelagem de dados de contagem, obtidos a partir de experimentos com medidas repetidas ao longo do tempo, em que o comportamento longitudinal da variável resposta é não linear. A distribuição Poisson multivariada, com covariâncias iguais entre as medidas, foi utilizada de forma a considerar a dependência entre os componentes do vetor de observações de medidas repetidas em cada unidade experimental. O modelo proposto por Karlis e Meligkotsidou (2005) foi estendido para dados longitudinais provenientes de experimentos inteiramente casualizados. Modelos para experimentos em blocos casualizados, supondo-se efeitos fixos ou aleatórios para blocos, foram também propostos. A ocorrência de superdispersão foi considerada e modelada através da distribuição Poisson multivariada mista. A estimação dos parâmetros foi realizada através do método de máxima verossimilhança, via algoritmo EM. A metodologia proposta foi aplicada a dados simulados para cada uma das situações estudadas e a um conjunto de dados de um experimento em blocos casualizados em que foram observados o número de folhas de bromélias em seis instantes no tempo. O método mostrou-se eficiente na estimação dos parâmetros para o modelo considerando o delineamento completamente casualizado, inclusive na ocorrência de superdispersão, e delineamento em blocos casualizados com efeito fixo, sem superdispersão e efeito aleatório para blocos. No entanto, a estimação para o modelo que considera efeito fixo para blocos, na presença de superdispersão e para o parâmetro de variância do efeito aleatório para blocos precisa ser aprimorada.

ASSUNTO(S)

maximum likelihood method análise de dados longitudinais count data modelos não lineares poisson distribution dados de contagem longitudinal data analysis método da máxima verossimilhança distribuição de poisson nonlinear models

Documentos Relacionados