Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions

AUTOR(ES)
FONTE

Oxford University Press

RESUMO

Aggregation of DNA-modified gold nanoparticles in a non-cross-linking configuration has extraordinary selectivity against terminal mismatch of the surface-bound duplex. In this paper, we demonstrate the utility of this selectivity for detection of single-base substitutions. The samples were prepared through standard protocols: DNA extraction, PCR amplification and single-base primer extension. Oligonucleotide-modified nanoparticles correctly responded to the unpurified products from the primer extension: aggregation for the full match and dispersion for all the mismatches. Applicability of this method to genomic DNA was tested with five human tumor cell lines, and verified by conventional technologies: mass spectrometry and direct sequencing. Unlike the existing methods for single-base substitution analysis, this method does not need specialized equipments, and opens up a new possibility of point-of-care diagnosis for single-nucleotide polymorphisms.

Documentos Relacionados