Nitrogen Oxide (NO) Gas-Sensing Properties of Bi2MoO6 Nanosheets Synthesized by a Hydrothermal Method

AUTOR(ES)
FONTE

Mat. Res.

DATA DE PUBLICAÇÃO

11/05/2017

RESUMO

Bi2MoO6 nanosheets were synthesized by a hydrothermal method. Morphology and structure of the Bi2MoO6 nanosheets were analyzed by SEM, XRD, N2 adsorption techniques and XPS. Gas-sensing properties of the as-prepared Bi2MoO6 sensors were also systematically investigated. The results showed the reaction temperature greatly affected the morphology and structure of as-prepared Bi2MoO6 nanosheets. When the reaction temperature reached 170 ºC, the morphology of the Bi2MoO6 nanosheets tended to regular, and pure Bi2MoO6 nanosheets were obtained. The operating temperature determined the gas-sensing properties of the Bi2MoO6 sensor. At this optimal operating temperature of 300 ºC, the sensitivity of the Bi2MoO6 sensor towards 20 ppm nitrogen oxide (NO) reached a maximum of 3.13. With the increase of the nitrogen oxide (NO) concentration, the sensitivity of the Bi2MoO6 sensor also rapidly increased, and displayed an almost linear relationship between them. Additionally, the Bi2MoO6 sensor demonstrated excellent selectivity with respect to several typical interfering gases.

Documentos Relacionados