Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

A number of hydrothermal vent sites exist on the summit of the Loihi Seamount, a shield volcano that is part of the Hawaiian archipelago. The vents are 1,100 to 1,325 m below the surface and range in temperature from slightly above ambient (10°C) to high temperature (167°C). The vent fluid is characterized by high concentrations of CO2 (up to 17 mM) and Fe(II) (up to 268 μM), but there is a general paucity of H2S. Most of the vents are surrounded by microbial mats that have a gelatinous texture and are heavily encrusted with rust-colored Fe oxides. Visually, the Fe oxides appeared homogeneous. However, light microscopy revealed that the oxides had different morphologies, which fell into three classes: (i) sheaths, (ii) twisted or irregular filaments, and (iii) amorphous oxides. A morphological analysis of eight different samples indicated that the amorphous oxides were overall the most abundant; however, five sites had >50% sheaths and filamentous oxides. These latter morphologies are most likely the direct result of microbial deposition. Direct cell counts revealed that all of the oxides had abundant microbial populations associated with them, from 6.9 × 107 to 5.3 × 108 cells per ml of mat material. At most sites, end point dilution series for lithotrophic Fe oxidizers were successful out to dilutions of 10−6 and 10−7. A pure culture was obtained from a 10−7 dilution tube; this strain, JV-1, was an obligate, microaerophilic Fe oxidizer that grew at 25 to 30°C. A non-cultivation-based molecular approach with terminal-restriction fragment length polymorphism also indicated the common presence of Fe-oxidizing bacteria at Loihi. Together, these results indicate that Fe-oxidizing bacteria are common at the Loihi Seamount and probably play a major role in Fe oxidation. A review of the literature suggests that microbially mediated Fe oxidation at hydrothermal vents may be important globally.

Documentos Relacionados