Natural Selection and Y-Linked Polymorphism

AUTOR(ES)
RESUMO

Several population genetic models allowing natural selection to act on Y-linked polymorphism are examined. The first incorporates pleiotropic effects of a Y-linked locus, such that viability, segregation distortion, fecundity and sexual selection can all be determined by one locus. It is shown that no set of selection parameters can maintain a stable Y-linked polymorphism. Interaction with the X chromosome is allowed in the next model, with viabilities determined by both X- and Y-linked factors. This model allows four fixation equilibria, two equilibria with X polymorphism and a unique point with both X- and Y-linked polymorphism. Stability analysis shows that the complete polymorphism is never stable. When X- and Y-linked loci influence meiotic drive, it is possible to have all fixation equilibria simultaneously unstable, and yet there is no stable interior equilibrium. Only when viability and meiotic drive are jointly affected by both X- and Y-linked genes can a Y-linked polymorphism be maintained. Unusual dynamics, including stable limit cycles, are generated by this model. Numerical simulations show that only a very small portion of the parameter space admits Y polymorphism, a result that is relevant to the interpretation of levels of Y-DNA sequence variation in natural populations.

Documentos Relacionados