Natural attenuation of gasoline and ethanol ground water plume / Atenuação natural de pluma de contaminação de gasolina e etanol em água subterrânea

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

A case study and two controlled field experiments were conducted to evaluate the impact of ethanol on the natural attenuation processes affecting dissolved phase of gasoline plumes. The case study was conducted in Itaguaí (RJ) where an E22 (gasoline with 22 % by volume of denatured ethanol) contaminant plume was studied. The controlled field experiments were conducted at the Borden aquifer in Canada to study plumes E10 and E95. In this case, contaminants were injected below the water table and plumes were monitored down gradient. In subsurface, ethanol partitions fastly from the residual phase and is transported with the ground water velocity. The other organic compounds migrate with lower velocities. Benzene and toluene present velocities close to ethanol, while trimethylbenzenes and naphthalene are the most retarded. These transport differences resulted in the spatial separation between the plumes throughout the monitoring period. The highest ethanol concentration detected was 12,762 mg/L, which corresponds to 1.63 % of ethanol volume in water. The ethanol concentrations detected do not support the cosolvency effect on the gasoline constituents of the plumes. The organic compounds presented mass losses throughout the monitoring period. Biodegradation was also demonstrated through dissolved oxygen consumption and methanogenesis. Ethanol presented the highest mass losses and was biotransformed under anoxic conditions. Benzene presented the smallest mass loss. Benzene´s higher persistence is related to the migration close to the ground water velocity and the preferential consumption of electron acceptors by ethanol. In the case study, the disappearance of ethanol can be related to its higher biodegradation rate, which was detected through the field experiments. However, the cosolvent effect in the plume, which would explain the depletion of the most mobile compounds such as benzene and toluene was not observed during the field experiments.

ASSUNTO(S)

btex persistência atenuação natural natural attenuation etanol ethanol persistence biodegradation biodegradação btex

Documentos Relacionados