Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the cyt bc1 complex of Rhodobacter capsulatus.

AUTOR(ES)
RESUMO

Several spontaneous mutants of the photosynthetic bacterium Rhodobacter capsulatus resistant to myxothiazol, stigmatellin and mucidin--inhibitors of the ubiquinol: cytochrome c oxidoreductase (cyt bc1 complex)--were isolated. They were grouped into eight different classes based on their genetic location, growth properties and inhibitor cross-resistance. The petABC (fbcFBC) cluster that encodes the structural genes for the Rieske FeS protein, cyt b and cyt c1 subunits of the cyt bc1 complex was cloned out of the representative isolates and the molecular basis of inhibitor-resistance was determined by DNA sequencing. These data indicated that while one group of mutations was located outside the petABC(fbcFBC) cluster, the remainder were single base pair changes in codons corresponding to phylogenetically conserved amino acid residues of cyt b. Of these substitutions, F144S conferred resistance to myxothiazol, T163A and V333A to stigmatellin, L106P and G152S to myxothiazol + mucidin and M140I and F144L to myxothiazol + stigmatellin. In addition, a mutation (aer126) which specifically impairs the quinol oxidase (Qz) activity of the cyt bc1 complex of a non-photosynthetic mutant (R126) was identified to be a glycine to an aspartic acid replacement at position 158 of cyt b. Six of these mutations were found between amino acid residues 140 and 163, in a region linking the putative third and fourth transmembrane helices of cyt b. The non-random clustering of several inhibitor-resistance mutations around the non-functional aer126 mutation suggests that this region may be involved in the formation of the Qz inhibitor binding/quinol oxidation domain(s) of the cyt bc1 complex. Of the two remaining mutations, the V333A replacement conferred resistance to stigmatellin exclusively and was located in another region toward the C terminus of cyt b. The L106P substitution, on the other hand, was situated in the transmembrane helix II that carries two conserved histidine residues (positions 97 and 111 in R. capsulatus) considered to be the axial ligands for the heme groups of cyt b. The structural and functional roles of the amino acid residues involved in the acquisition of Qz inhibitor resistance are discussed in terms of the primary structure of cyt b and in relation to the natural inhibitor-resistance of various phylogenetically related cyt bc/bf complexes.

Documentos Relacionados