Mutations Affecting Light Regulation of Nuclear Genes Encoding Chloroplast Glyceraldehyde-3-Phosphate Dehydrogenase in Arabidopsis1

AUTOR(ES)
FONTE

American Society of Plant Biologists

RESUMO

Expression of nuclear genes that encode the A and B subunits of chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPA and GAPB) of Arabidopsis is known to be regulated by light. We used a negative selection approach to isolate mutants that were defective in light-regulated expression of the GAPA gene. Two dominant mutants belonging to the same complementation group, uga1-1 and uga1-2, were then characterized. These two mutants showed a dramatic reduction in GAPA mRNA level in both mature plants and seedlings. Surprisingly, mutations in uga1-1 and uga1-2 had no effect on the expression of GAPB and several other light-regulated genes. In addition, we found that the chloroplast glyceraldehyde-3-phosphate dehydrogenase enzyme activity of the mutants was only slightly lower than that of the wild type. Western-blot analysis showed that the GAPA protein level was nearly indistinguishable between the wild-type and the uga mutants. These results suggested that posttranscriptional control was involved in the up-regulation of the GAPA protein in the mutants. The uga1-1 mutation was mapped to the bottom arm of chromosome V of the Arabidopsis genome.

Documentos Relacionados