Mutation of the Oct-1 POU-specific recognition helix leads to altered DNA binding and influences enhancement of adenovirus DNA replication.

AUTOR(ES)
RESUMO

To assess which residues of Oct-1 POU-specific (POUs) are important for DNA recognition and stimulation of adenovirus DNA replication we have mutated 10 residues of the POUs helix-turn-helix motif implicated in DNA contact. Seven of these turned out to have reduced DNA binding affinity. Of these, three alanine substituted proteins were found to have a changed specificity using a binding site selection procedure. Mutation of the first residue in the recognition helix, Gln44, to alanine led to a loss of specificity for the first two bases, TA, of the wild-type recognition site TATGC(A/T)AAT. Instead of the A, a T was selected, suggesting a new contact and a novel specificity. A change in specificity was also observed for the T45A mutant, which could bind to TATAC(A/T)AAT, a site hardly recognized by the wild-type protein. Mutation of residue Arg49 led to a relaxed specificity for three consecutive bases, TGC. This residue, which is critical for high affinity binding, is absent from the structurally homologous lambdoid helix-turn-helix motifs. Employing a reconstituted system all but two mutants could stimulate adenovirus DNA replication upon saturation. Mutation of residues Gln27 and Arg49 impairs the ability of the Oct-1 POU domain protein to enhance replication, with a concomitant loss of DNA contacts. Since the POU domain binds the precursor terminal protein-DNA polymerase complex and guides it to the origin, lack of stimulation may be caused by incorrect targetting of the DNA polymerase due to loss of specificity.

Documentos Relacionados