Mutants of Yeast with Altered Oxidative Energy Metabolism: Selection and Genetic Characterization

AUTOR(ES)
RESUMO

Isolation of a series of mutants, characterized by decreased ability to utilize nonfermentable carbon sources for growth and presence of all cytochromes, is reported. A total of 161 mutants, showing deficient growth on glycerol but able to reduce 2,3,5-triphenyltetrazolium chloride, were isolated, purified, and characterized by ability to grow on various carbon sources. Mutants showing decreased growth were examined by low-temperature spectroscopy, and the 35 strains shown to possess all cytochromes were retained for further studies. These strains were characterized by growth on various nonfermentable carbon sources, relative yield on glucose medium, and respiration (QO2) of glucose and ethyl alcohol. Genetic studies revealed that at least 19 of the 35 mutants are the result of mutation in single nuclear genes. Furthermore, at least 11 complementation groups are represented among these 19 mutants. Mutants within two complementation groups were shown to be very similar in various properties. These studies demonstrate that a large number of nuclear genes control oxidative energy metabolism and that the characteristics of mutants of the general class are extremely diverse.

Documentos Relacionados