Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance.

AUTOR(ES)
RESUMO

Fluconazole-susceptible Candida albicans strains accumulated [3H]fluconazole at a rate of approximately 2 pmol/min per 10(9) cells. Fluconazole accumulation was not affected by the pretreatment of cells with sodium azide or with 2-deoxyglucose. The rate of fluconazole accumulation became saturated at high fluconazole concentrations and was not affected by the addition of ketoconazole, and there was no fluconazole accumulation in cells incubated at 4 degrees C. A fluconazole-resistant mutant of C. albicans SGY-243 was isolated following growth enrichment in fluconazole-containing medium. Cells of the mutant strain, designated FR2, showed a reduced rate of fluconazole accumulation compared with SGY-243 and were not resistant to other azole antifungal agents. The rates of fluconazole accumulation by C. albicans FR2 and the other azole-resistant strains, B59630, AD, and KB, were increased in the presence of sodium azide, suggesting that fluconazole resistance in these strains may be associated with an energy-dependent drug efflux. Fluconazole-resistant C. albicans strains all contained elevated amounts (2- to 17-fold) of mRNA encoding Cdr1, and an ATP-binding cassette-type transporter. In addition, C. albicans FR2 also contained increased amounts of mRNA encoding Benr, a major facilitator superfamily transporter. These results suggest that fluconazole enters C. albicans cells by facilitated diffusion and that fluconazole resistance may involve energy-dependent drug efflux associated with increased expression of Benr and/or Cdr1.

Documentos Relacionados