Multiple drug resistance in Mycobacterium avium: is the wall architecture responsible for exclusion of antimicrobial agents?

AUTOR(ES)
RESUMO

Whole cells of Mycobacterium avium, characterized by their negative response in the nine biochemical tests used for mycobacterial identification in our laboratory, turned positive for nitrate reductase, Tween-80 hydrolysis, beta-glucosidase, acid phosphatase, alkaline phosphatase, penicillinase, and trehalase after their wall portion was removed to yield spheroplasts. This suggested that the negative results in most of the biochemical procedures were caused by the exclusion mechanism at the wall level. Preliminary transmission and scanning electron microscopic studies showed differences at wall level between laboratory-maintained opaque, dome-shaped (SmD) and host-recycled smooth, transparent (SmT) colony type variants of M. avium and suggested the presence of an outer regularly structured layer in SmT variants. Comparative ultrastructural studies utilizing different polysaccharide coloration methods confirmed the presence of an outer polysaccharide layer in SmT variants which was probably related to their enhanced pathogenicity for experimental animals and drug resistance as compared to that of SmD variants. These findings are discussed with respect to multiple drug resistance, virulence, and gene expression of M. avium.

Documentos Relacionados