Monoclonal antibodies that inhibit ADP-ribosyltransferase but not NAD-glycohydrolase activity of pertussis toxin.

AUTOR(ES)
RESUMO

Kenimer et al. (J. G. Kenimer, J. Kim, P. G. Probst, C. R. Manclark, D. G. Burstyn, and J. L. Lowell, Hybridoma 8:37-51, 1989) identified three classes of monoclonal antibodies, termed A, B, and C, that recognize the S1 subunit of pertussis toxin. This report presents data demonstrating that class A monoclonal antibodies (3CX4, 6D11C, and 3C4D), which block the ADP-ribosyltransferase activity and recognize the predominant neutralizing epitope on the S1 subunit of the toxin, do not inhibit the NAD-glycohydrolase activity of the toxin. In addition, alkylation of cysteine 41 of the S1 subunit, which may interact with NAD, inactivates the toxin but does not prevent binding by class A antibodies. Taken together, these results support the conclusion that proper alterations of amino acids that interact with NAD should allow for inactivation of the toxin without destruction of the predominant neutralizing epitope. The class A antibodies recognized control but not heat-treated pertussis toxin spotted onto nitrocellulose, indicating that class A antibodies do not recognize denatured S1 subunit. In contrast, a nonneutralizing class C antibody (X2X5) failed to bind to control toxin or S1 subunit in solution and recognized heat-treated pertussis toxin better than control toxin when spotted onto nitrocellulose. Thus, this type of analysis presents a heterogeneous mixture of fully or partially denatured and native S1 proteins and fails to distinguish between neutralizing and nonneutralizing antibodies.

Documentos Relacionados