Monoclonal antibodies detect a spectrin-like protein in normal and dystrophic human skeletal muscle.

AUTOR(ES)
RESUMO

Spectrin is the major protein of the erythrocyte membrane skeleton, which is bound to the cytoplasmic surface of the membrane's lipid bilayer and is responsible for cell shape and membrane elasticity. Inability to identify spectrin in other cell types led to the assumption that this protein was unique to erythrocytes. However, spectrin-like proteins have been demonstrated recently in a variety of cell types, including skeletal and cardiac muscle, in several species. We used monoclonal antibodies against human erythrocyte spectrin subunits in an immunocytochemical study to detect related proteins in normal and diseased human skeletal muscle. Six of seven monoclonal antibodies against beta-spectrin determinants were bound at the cytoplasmic surface of muscle fiber plasma membranes, whereas none of six monoclonal antibodies against alpha-spectrin determinants was bound. Muscle fibers of patients with neuromuscular diseases showed similar distribution and specificity of antibody binding to those of normal subjects, but the intensity of binding was increased. In contrast, probable regenerating fibers in muscle of patients with muscular dystrophies showed reduced binding of antibodies, but reduced binding was not seen in fetal muscle fibers nor in those of a patient with a myotubular myopathy. We conclude that human skeletal muscle fibers possess a spectrin-related protein associated with their plasma membrane that shows extensive beta-chain similarities to erythrocyte spectrin but differs significantly with respect to the alpha-subunit. Its function may be associated with the maintenance of membrane and myofibril integrity during contraction, and the increased antibody binding in diseased muscle may reflect a structural rearrangement of spectrin or a compensatory increase in spectrin abundance in response to increased stress on these systems.

Documentos Relacionados