Molecular virology of Epstein-Barr virus.

AUTOR(ES)
RESUMO

Epstein-Barr virus (EBV) interacts with its host in three distinct ways in a highly regulated fashion: (i) EBV infects human B lymphocytes and induces proliferation of the infected cells, (ii) it enters into a latent phase in vivo that follows the proliferative phase, and (iii) it can be reactivated giving rise to the production of infectious progeny for reinfection of cells of the same type or transmission of the virus to another individual. In healthy people, these processes take place simultaneously in different anatomical and functional compartments and are linked to each other in a highly dynamic steady-state equilibrium. The development of a genetic system has paved the way for the dissection of those processes at a molecular level that can be studied in vitro, i.e. B-cell immortalization and the lytic cycle leading to production of infectious progeny. Polymerase chain reaction analyses coupled to fluorescent-activated cell sorting has on the other hand allowed a descriptive analysis of the virus-host interaction in peripheral blood cells as well as in tonsillar B cells in vivo. This paper is aimed at compiling our present knowledge on the process of B-cell immortalization in vitro as well as in vivo latency, and attempts to integrate this knowledge into the framework of the viral life cycle in vivo.

Documentos Relacionados