Molecular Evidence for Novel Planctomycete Diversity in a Municipal Wastewater Treatment Plant

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

We examined anoxic and aerobic basins and an anaerobic digestor of a municipal wastewater treatment plant for the presence of novel planctomycete-like diversity. Three 16S rRNA gene libraries were constructed by using a 16S rRNA-targeted universal reverse primer and a forward PCR primer specific for Planctomycetes. Phylogenetic analysis of 234 16S rRNA gene sequences defined 110 operational taxonomic units. The majority of these sequences clustered with the four known genera, Pirellula (32%), Planctomyces (18.4%), Gemmata (3.8%), and Isosphaera (0.4%). More interestingly, 42.3% of the sequences appeared to define two distantly separated monophyletic groups. The first group, represented by 35.5% of the sequences, was related to the Planctomyces group and branched as a monophyletic cluster. It exhibited between 11.9 and 20.3% 16S rRNA gene sequence dissimilarity in comparisons with cultivated planctomycetes. The second group, represented by 6.8% of the sequences, was deeply rooted within the Planctomycetales tree. It was distantly related to the anammox sequences (level of dissimilarity, 20.3 to 24.4%) and was a monophyletic cluster. The retrieved sequences extended the intralineage phylogenetic depth of the Plantomycetales from 23 to 30.6%. The lineages described here may have a broad diversity of undiscovered biochemical and metabolic novelty. We developed a new 16S rRNA-targeted oligonucleotide probe and localized members of one of the phylogenetic groups using the fluorescent in situ hybridization technique. Our results indicate that activated sludge contains very diverse representatives of this group, which grow under aerobic and anoxic conditions and even under anaerobic conditions. The majority of species in this group remain poorly characterized.

Documentos Relacionados