Molecular Characterization and Postsplicing Fate of Three Introns within the Single rRNA Operon of the Hyperthermophilic Archaeon Aeropyrum pernix K1

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The single rRNA operon (arnS-arnL) of the hyperthermophilic archaeon Aeropyrum pernix K1 was sequenced. The DNA sequence data and detailed RNA analyses disclosed an unusual feature: the presence of three introns at hitherto undescribed insertion positions within the rRNA genes. The 699-nucleotide (nt) intron Iα was located at position 908 (Escherichia coli numbering [H. F. Noller, Annu. Rev. Biochem. 53:119–162, 1984]) of the 16S rRNA, while the 202-nt intron Iβ and 575-nt intron Iγ were located at positions 1085 and 1927 (E. coli numbering), respectively, of the 23S rRNA. They were located within highly conserved sites which have been implicated as crucial for rRNA function in E. coli. All three introns were remarkably AT rich (41.5 to 43.1 mol% G+C) compared with the mature rRNAs (67.7 and 69.2 mol% G+C for 16S and 23S rRNAs, respectively). No obvious primary sequence similarities were detected among them. After splicing from rRNA transcripts in vivo, a large quantity of intronic RNAs were stably retained in the linear monomeric form, whereas a trace of topoisomeric RNA molecules also appeared, as characterized by their behavior in two-dimensional gel electrophoresis. Secondary structural models of the Iα-, Iβ-, and Iγ-containing rRNA precursors agree with the bulge-helix-bulge motif. Two of the introns, Iα and Iγ, contained open reading frames whose protein translation exhibited no overall similarity with proteins reported so far. However, both share a LAGLI-DADG motif characteristic of homing endonucleases.

Documentos Relacionados