Modulation of Protein Levels in Chromosomal Dosage Series of Maize: The Biochemical Basis of Aneuploid Syndromes

AUTOR(ES)
RESUMO

Genetically defined dosage series of chromosome arms 1L, 3L, 4S, 5L, 7L, 9S, 10L and combinations of 1L–3L, collectively spanning approximately one-third of the maize genome, were examined for alterations in the expression of total protein profiles in scutellar tissue. The major effects found were negative correlations of specific proteins with the dosage of particular regions in a manner similar to that previously described for enzyme activity levels (Birchler 1979). Chromosome arms 1L, 4S and 5L produced the most severe negative effects, with 3L and 7L exhibiting this phenomenon to a lesser degree. Positive correlations of certain proteins were observed with the dosage of the 1L, 3L, 5L and 7L regions. The structural locus of one of the major scutellar proteins (PRO) is present in the long arm of chromosome 1 (Schwartz 1979), but exhibits compensation in a dosage series involving whole-arm comparisons. Multiple factors in 1L affect the level of the protein. The compound TB-1La-3L4759-3 (1L 0.20–0.39) has a slight negative effect on PRO, while TB-1La-3Le (1L 0.20–0.58) and TB-1La-3L5267 (1L 0.20–0.72) have a more pronounced negative influence. The level of this protein is not altered by the dosage of 3L. These observations suggest that compensation is brought about by the cancellation of a positive structural gene dosage effect by the negative inverse effect. Other regions of the genome that contribute to the control of PRO levels are 4S and 5L. Total protein profiles were also compared in haploid, diploid and tetraploid maize as a comparison to the aneuploid series. Most proteins exhibit structural-gene-dosage effects through the ploidy series, but others show a positive effect greater than expected from varying the structural genes. Still others are negatively affected by ploidy changes. In general, the ploidy alterations are not as great as predicted from the cumulative action of the aneuploid effects. The bearing of these observations on the biochemical basis of aneuploid syndromes is discussed.

Documentos Relacionados