Modelos computacionais para o processo de forrageamento e facilitação social em cupins / Computer models to social facilitation and foraging process in termites

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

There is much current interest in understanding the dynamic principles that generate patterns in space and time. In biology, the complexity of self-organized patterns are seen from colonies of bacterias, of social insects to the human society. Among these, animal foraging patterns associated to the strategies of systematic search for food sources are included. In this dissertation we propose a model for the foraging of underground termites; such model consists of termites that build tunnels in a infinite two-dimensional space subject to a fixed density of food distributed at random. Each tunnel advances for successive segments of unitary length, with directions deviating from that of it predecessor for an aleatory angle evenly distributed between . -α and α . Each termite is characterized by a gain factor gk, and an activity A(t) that evolves in time according to expression: Ak(t + 1) = tanh(Ak(t)gk). If this activity reaches a minimum value, the termite returns to the nest, restoring your activity to the maximum (A=1). Each tunnel is characterized by quantity of pheromone trail that increases when a termite finds food or enters in that tunnel. However, the quantity of pheromone in a tunnel is reduced at a given rate after each time step, that is, after the progress of all tunnels. After tl time steps, new termites penetrate in tunnels; the choice in which of them to enter is proportional to the amount of pheromone. Finally a tunnel can bifurcate, creating a new one, if the amount of termites in it overcome a fixed value. In addition to the structure of the foraging tunnels, we modeled the social facilitation in termites inside a tunnel of size L. In this model, a termite will be inactive if your activity reach a minimum value Amin. If two termites encounter, their activities are restored to the maximum. The foraging efficiency associated to the tunnels is characterized as a function of the maximum deviation angle α , the pheromone decay rate and the number of termites inside of a tunnel necessary for the creation of a new one. For the process of social facilitation we presented the evolution in time of density of active termites. The spatio-temporal patterns for tunnels formation and social facilitation process are also presented.

ASSUNTO(S)

busca aleatória processo de contato fisica da materia condensada foraging forrageamento contact process aleatory search

Documentos Relacionados