Modelo de desgaste oxidativo baseado em parâmetros termodinâmicos. / Oxidational wear model based on thermidynamic parameters.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2004

RESUMO

During sliding wear, heat generated friction occurs, which favors oxidation occurrence on the contacting surfaces of metallic materials. The oxidation phenomenon can result in wear rate attenuation due to transitions in the contact feature from metal-metal to either metal-oxide or oxide-oxide. This work aimed to develop a theoretical modeling on oxidational wear. In the obtained model, both thermodynamic and tribological parameters were used, such as Gibbs energy, load, actual area of contact, velocity and contact temperature. In order to obtain experimental data for the model assessment, usual pin-on-disk tests were conducted under some load and velocity conditions. Relations among the variables, such as contact temperature, load, velocity and physical-chemical properties of the materials, were attained. The tests were performed under continuous rising on load. Intervals from 20 to 120 N, 20 to 80 N and 20 to 40 N were tested. The pin material was made of quenched and tempered M2 tool steel and the disks were of austempered AISI 1045 steel with bainitic microstructure. Surface characterization was carried out before and after the tests, through optical and scanning electronic microscopes. Analyzing the results obtained from the model and from the experimental tests, it was possible to conclude that the wear phenomenon is related to the contact energy, which depends on the physical-chemical conditions of the surfaces, the environment and the mechanical loading the surfaces undergo. The material properties, which do also influence the wear rate, were taken into consideration in the model as the Gibbs energy of the materials.

ASSUNTO(S)

aisi 1054 aisi m2 aisi m2 oxidational wear tool steel aço ferramenta desgaste oxidativo wear modelling modelo desgaste aisi 1054

Documentos Relacionados