Modelagem e simulação do processo de fermentação extrativa a vácuo com uma câmara de flash e separação do CO2 utilizando uma coluna de absorção / Modeling and simulation of the vacuum extractive fermentation process using a flash chamber and an absorption column for CO2 separation

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

07/07/2011

RESUMO

The ethanol, also known as bioethanol, shows positive characteristics for being used as a large scale fuel, mainly because of the relatively low cost, low pollutant impact compared to fossil fuels and its feasibility of being produced from a renewable matrix through fermentation of vegetable origin products. The conventional fermentation process is typically inhibitory since the produced ethanol inhibits the yeast cells growth, reducing the yield of process. Therefore, improving the efficiency of bioethanol production is essential for reducing the production costs and it is necessary the study of each process step especially the fermentation one. In this context, this study aims the simulation of a bioethanol production process based on the concept of vacuum extractive fermentation in which the production and removal of ethanol occurs simultaneously, allowing low concentration levels into the during the process. In addition, it was coupled an absorption unit to recover the ethanol carried by the fermentation gases. This study was conducted in the commercial simulator ASPEN PLUS®. It was used the thermodynamic equilibrium model NRTL-HOC (Non Random Two Liquid- Hayden-O Connell)for the estimation of thermodynamic properties in the simulator since it adequately describes the behavior of most binary systems present in the process. Through the sensitivity analysis performed in steady state, it was determined the optimum operating ranges of each process unit (flash, absorption column, among others.). Therefore, it was determined that the vacuum extractive fermentation process had higher yields (97.23%) compared to the conventional process (96.59%) when calculated with a conversion percentage of 93%. It was programmed, for obtaining the most accurate process simulation results, a fermentation unit based on a fermentation mathematical modeling found in the literature, which includes the kinetic parameters estimated from experimental data. Finally, this unit programmed into ASPEN CUSTOM MODELER module was exported and coupled to the simulation process executed in ASPEN PLUS®. As a result, it was possible to simulate a more efficient process due to the decreased in the cell inhibition caused by the product and it was recovered the ethanol dragged by the fermentation gases

ASSUNTO(S)

Álcool fermentação extrativa modelagem matemática simulação ethanol extractive fermentation mathematical modeling simulation

Documentos Relacionados