Modelagem computacional de um reator anaeróbico fabricado em polietileno de alta densidade rotomoldado / Computational modeling of a anaerobic reactor manufaturated in polyethilene of high density rotomolding

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

The present work was developed to evaluate the potential of uses of an anaerobic reactor manufactured in HDPE High Density Polyethylene produced by the rotomolding process in substitution to the conventional reactors built in stonemasonry, working in a batch regime and buried in the soil. The state of tensions and the deformations were assessed using the program of Finite Elements ABAQUS version 6.5 and the mesh of the knots using the program MSC PATRAN 2005 forming 7329 knots and 2004 elements, in an optimized mesh for the areas of larger curvature (tension concentrator points). The loading is formed with an internal pressure of the biogas of 5kPa added of biomass hydrostatic load of 6000 kg in an elastic foundation calculated by the ratio pressure/settling starting from the Module of equivalent Elasticity of the soil (Esolo). Comparing the state of tensions assessed during the loading was possible to verify that the largest tension obtained in the most critical element goes the most probable utilization of the reactor, reached the value of 7, 46 MPa (it doesn t surpass 40% of the smallest resistance value to the traction and to the shearing strain of HDPE of 20 MPa) and the largest ratio of dR/R deformation was of 1.0%. The most critical assessed case was when the reactor is buried in soil with Esolo = 1,55 MPa and material with EPEAD = 1550 MPa, totally empty and with a superficial overload in the land of 20kN/m2 generating a tension of 17,80 MPa in the element 1955 (reaching 89% of the smallest resistance value to the traction and the shearing strain of a 20 MPa HDPE). The obtained results confirmed that the reactor produced in HDPE substitutes with advantages the models manufactured in stonemasonry, supporting the internal biogas pressure and the biomass load.

ASSUNTO(S)

biomass energy bioreatores - polietileno - simulação por computador bioreactors - polyethilene - computer simulation bioenergia deformações e tensões high density polyethylene digestão anaeróbica strains and stresses energia da biomassa biogas polietileno sanitary engineering engenharia sanitária engenharia civil biogás biomass biogás deformations and tensions anaerobic digestion reator anaeróbico anaerobic reactor

Documentos Relacionados