Microgradients of Microbial Oxygen Consumption in a Barley Rhizosphere Model System

AUTOR(ES)
RESUMO

A microelectrode technique was used to map the radial distribution of oxygen concentrations and oxygen consumption rates around single roots of 7-day-old barley seedlings. The seedlings were grown in gel-stabilized medium containing a nutrient solution, a soil extract, and an inert polymer. Oxygen consumption by microbial respiration in the rhizosphere (<5 mm from the root) and in bulk medium (>30 mm from the root) was determined by using Fick's laws of diffusion and an analytical approach with curve fitting to measured microprofiles of oxygen concentration. A marked increase of microbial respiration was observed in the inner 0- to 3-mm-thick, concentric zone around the root (rhizosphere). The volume-specific oxygen consumption rate (specific activity) was thus 30 to 60 times higher in the innermost 0 to 0.01 mm (rhizoplane) than in the bulk medium. The oxygen consumption rate in the root tissue was in turn 10 to 30 times higher than that in the rhizoplane. Both microbial respiration and oxygen uptake by the root varied between different roots. This was probably due to a between-root variation of the exudation rate for easily degradable carbon compounds supporting the microbial oxygen consumption.

Documentos Relacionados