Microbial Oxidation of Gaseous Hydrocarbons: Production of Secondary Alcohols from Corresponding n-Alkanes by Methane-Utilizing Bacteria

AUTOR(ES)
RESUMO

Over 20 new strains of methane-utilizing bacteria were isolated from lake water and soil samples. Cell suspensions of these and of other known strains of methane-utilizing bacteria oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol). The product secondary alcohols accumulated extracellularly. The rate of production of secondary alcohols varied with the organism used for oxidation. The average rate of 2-propanol, 2-butanol, 2-pentanol, and 2-hexanol production was 1.5, 1.0, 0.15, and 0.08 μmol/h per 5.0 mg of protein in cell suspensions, respectively. Secondary alcohols were slowly oxidized further to the corresponding methylketones. Primary alcohols and aldehydes were also detected in low amounts (rate of production were 0.05 to 0.08 μmol/h per 5.0 mg of protein in cell suspensions) as products of n-alkane (propane and butane) oxidation. However, primary alcohols and aldehydes were rapidly metabolized further by cell suspensions. Methanol-grown cells of methane-utilizing bacteria did not oxidize n-alkanes to their corresponding secondary alcohols, indicating that the enzymatic system required for oxidation of n-alkanes was induced only during growth on methane. The optimal conditions for in vivo secondary alcohol formation from n-alkanes were investigated in Methylosinus sp. (CRL-15). The rate of 2-propanol and 2-butanol production was linear for the 40-min incubation period and increased directly with cell protein concentration up to 12 mg/ml. The optimal temperature and pH for the production of 2-propanol and 2-butanol were 40°C and pH 7.0. Metalchelating agents inhibited the production of secondary alcohols. The activities for the hydroxylation of n-alkanes in various methylotrophic bacteria were localized in the cell-free particulate fractions precipitated by centrifugation between 10,000 and 40,000 × g. Both oxygen and reduced nicotinamide adenine dinucleotide were required for hydroxylation activity. The metal-chelating agents inhibited hydroxylation of n-alkanes by the particulate fraction, indicating the involvement of a metal-containing enzyme system in the oxidation of n-alkanes. The production of 2-propanol from the corresponding n-alkane by the particulate fraction was inhibited in the presence of methane, suggesting that the subterminal hydroxylation of n-alkanes may be catalyzed by methane monooxygenase.

Documentos Relacionados