Microbial Ecophysiology of Whey Biomethanation: Intermediary Metabolism of Lactose Degradation in Continuous Culture

AUTOR(ES)
RESUMO

The intermediary carbon and electron flow routes for lactose degradation during whey biomethanation were studied in continuous culture. The chemostat was operated under lactose-limited conditions with a 100-h retention time. The carbon balance observed for lactose degradation was 4.65 mmol of CH4, 4.36 mmol of CO2 and 1.15 mmol of cellular carbon per mmol of lactose consumed, with other intermediary metabolites (i.e., acetate, lactate, etc.) accounting for less than 2% of the lactose consumed. The carbon and electron recoveries for this biomethanation were 87 and 90%, respectively. 14C tracer studies demonstrated that lactose biomethanation occurred in three distinct but simultaneous phases. Lactose was metabolized primarily into lactate, ethanol, acetate, formate, and carbon dioxide. During this hydrolytic phase, 82% of the lactose was transformed into lactate. These metabolites were transformed into acetate and H2-CO2 in a second, acetogenic, phase. Finally, the direct methane precursors were transformed during the methanogenic phase, with acetate accounting for 81% of the methane formed. A general scheme is proposed for the exact carbon and electron flow route during lactose biomethanation, which predicts the prevalent microbial populations in this ecosystem.

Documentos Relacionados