Metal ion modulation of cystinyl aminopeptidase

AUTOR(ES)
FONTE

Portland Press Ltd.

RESUMO

Cystinyl aminopeptidase has one Zn2+-binding motif and is a member of the M1 aminopeptidase family. Ion modulation of its catalytic activity was studied in membranes of CHO-K1 cells (Chinese-hamster ovary K1 cells) using L-leucine-p-nitroanilide as substrate. The planar bidentate chelators 1,10-phenanthroline and 2,2′-bipyridine inhibited the activity in a concentration-dependent manner with Hill slopes of 3.32±1.78 and 2.10±0.26 respectively. The acetic acid-containing chelators EDTA, EGTA and DTPA (diethylenetriamine-N,N,N′,N″,N″-penta-acetic acid) weakly affected the activity, but they increased the potency of the planar chelators up to a limit, at which Hill slopes became close to unity. Moreover, competition between 1,10-phenanthroline and the substrate only took place in the presence of EDTA. These findings are compatible with a model in which the bidentate chelators inhibit enzyme activity by decreasing the free Zn2+ concentration. By removing a modulatory ion from an allosteric site at the enzyme, the acetic acid-containing chelators facilitate the direct interaction between the bidentate chelators and the catalytic Zn2+. The inhibitory effect of EDTA plus 1,10-phenanthroline could be completely reversed by Zn2+. Ca2+ and Mg2+ increased the potency of Zn2+ for this process. This is expected if they interact with the modulatory site to decrease the sensitivity of the enzyme towards 1,10-phenanthroline. Conversely, the bidendate chelators increased the high-affinity [125I]angiotensin IV binding to the membranes and this was potentiated by the acetic acid-containing chelators. These findings support the concept that high-affinity [125I]angiotensin IV binding, previously referred to as ‘AT4 receptor binding’, only occurs for the cystinyl aminopeptidase apoenzyme.

Documentos Relacionados