Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with 13C- and 15N-labeled precursors by 13C and 15N nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry.

AUTOR(ES)
RESUMO

Recent studies have suggested that the onset of synthesis of actinomycin D in Streptomyces parvulus is due to a release from L-glutamate catabolic repression. In the present investigation we showed that S. parvulus has the capacity to maintain high levels of intracellular glutamate during the synthesis of actinomycin D. The results seem contradictory, since actinomycin D synthesis cannot start before a release from L-glutamate catabolic repression, but a relatively high intracellular pool of glutamate is needed for the synthesis of actinomycin D. Utilizing different labeled precursors, D-[U-13C]fructose and 13C- and 15N-labeled L-glutamate, and nuclear magnetic resonance techniques, we showed that carbon atoms of an intracellular glutamate pool of S. parvulus were not derived biosynthetically from the culture medium glutamate source but rather from D-fructose catabolism. A new intracellular pyrimidine derivative whose nitrogen and carbon skeletons were derived from exogenous L-glutamate was obtained as the main glutamate metabolite. Another new pyrimidine derivative that had a significantly reduced intracellular mobility and that was derived from D-fructose catabolism was identified in the cell extracts of S. parvulus during actinomycin D synthesis. These pyrimidine derivatives may serve as a nitrogen store for actinomycin D synthesis. In the present study, the N-trimethyl group of a choline derivative was observed by 13C nuclear magnetic resonance spectroscopy in growing S. parvulus cells. The choline group, as well as the N-methyl groups of sarcosine, N-methyl-valine, and the methyl groups of an actinomycin D chromophore, arose from D-fructose catabolism. The 13C enrichments found in the peptide moieties of actinomycin D were in accordance with a mechanism of actinomycin D synthesis from L-glutamate and D-fructose.

Documentos Relacionados