Melatonina, isoenzimas de glutationa S-transferases e estresse oxidante em pacu Piaractus mesopotamicus (Holmberg, 1887) / Melatonin, Glutathione S-transferases isoenzymes, and oxidative stress in pacu, Piaractus mesopotamicus (Holmberg, 1887).

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

08/03/2010

RESUMO

Oxygen is vital for vertebrates. However, changes in the levels of dissolved oxygen in water might cause oxidative stress in fishes because the shortage of oxygen followed by reoxygenation originates reactive oxygen species (ROS) inside cells. Higher intracellular levels of ROS favor alterations of proteins, phospholipids and nucleic acid molecules, which result in impairment of many cell functions. In Pantanal, the pacus habitat, circadian variation of the oxygen levels occurs in water of the shallow lagoons that ended up isolated from the rivers along the dry season. Pacu has evolved under the pressure of continuous exposition to harmful effects of ROS caused by the annual inundation pulses. Melatonin, an indolamine produced by the pineal gland, influences the levels of activity of antioxidant enzymes that reduce ROS, and is capable of donating electrons or scavenge free radicals nonenzymatically. Pacus melatonin levels are higher during summer than in winter. Glutathione S-transferases isoenzymes that catalyze the conjugation of the tripeptide glutathione with 4-hydroxynonenal, an aldehyde derived from peroxidation of fat acids by ROS, are important to avoid functional alterations of proteins consequential to the binding of 4-hydroxynonenal to their structures. In this work, we searched for facts that linked oxidative stress, levels of activity of glutathione S-transferase and melatonin, in order to establish whether melatonin could help pacus to overcome the pernicious effects of reactive oxygen species. We carried out assays of glutathione S-transferases in liver cytosol of pacus kept under normoxia, hypoxia, reoxygenation and hyperoxia, in the summer and in the winter. We measured the effect of melatonin in vitro and in vivo on isoenzymes of glutathione S-transferases. We measured the effects of oxidative stress on the binding of 4-hydroxynonenal to proteins in liver of pacu treated with melatonin. Only isoenzymes that conjugate 4-hydroxynonenal with glutathione showed less activity during the winter in comparison to the summer; other isoenzymes did not have their activities changed seasonally. In vitro, melatonin did not change the activity of glutathione S-transferases isoenzymes that conjugate 4-hydroxynonenal, but inhibited other isoenzymes of glutathione S-transferase. In vivo, melatonin enhanced the liver activity of the glutathione S-transferase that conjugate 4-hydroxynonenal found in winter up to the levels found in summer. The binding of 4-hydroxynonenal to proteins was lower in liver cytosol from pacus injected with melatonin. Our findings show that melatonin can influence the effects of ROS in liver of pacu. It became evident that plasma melatonin maintains the liver levels of the conjugating activity of 4-hydroxynonenal and that the lower production of melatonin during winter is not adequate to the conjugation of 4-hydroxynonenal.

ASSUNTO(S)

piaractus mesopotamicus pacu estresse oxidante melatonina glutationa s-transferase enzimologia melatonin glutathione s-transferases oxidative stress pacu piaractus mesopotamicus

Documentos Relacionados